Extensions 1→N→G→Q→1 with N=C22×SD16 and Q=C2

Direct product G=N×Q with N=C22×SD16 and Q=C2
dρLabelID
C23×SD1664C2^3xSD16128,2307

Semidirect products G=N:Q with N=C22×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×SD16)⋊1C2 = C2×C8⋊D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):1C2128,1783
(C22×SD16)⋊2C2 = (C2×C8)⋊11D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):2C2128,1789
(C22×SD16)⋊3C2 = C2×D4.3D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):3C2128,1796
(C22×SD16)⋊4C2 = C2×C83D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):4C2128,1880
(C22×SD16)⋊5C2 = M4(2)⋊10D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):5C2128,1886
(C22×SD16)⋊6C2 = SD16⋊D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):6C2128,1997
(C22×SD16)⋊7C2 = SD166D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):7C2128,1998
(C22×SD16)⋊8C2 = C22×C8⋊C22φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):8C2128,2310
(C22×SD16)⋊9C2 = C22×C8.C22φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):9C2128,2311
(C22×SD16)⋊10C2 = C2×D4○SD16φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):10C2128,2314
(C22×SD16)⋊11C2 = C233SD16φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):11C2128,732
(C22×SD16)⋊12C2 = (C22×D8).C2φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):12C2128,744
(C22×SD16)⋊13C2 = (C2×C8)⋊20D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):13C2128,746
(C22×SD16)⋊14C2 = M4(2).5D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):14C2128,751
(C22×SD16)⋊15C2 = C2×C22⋊SD16φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):15C2128,1729
(C22×SD16)⋊16C2 = C2×Q8⋊D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):16C2128,1730
(C22×SD16)⋊17C2 = C2×D4⋊D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):17C2128,1732
(C22×SD16)⋊18C2 = C2×D4.7D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):18C2128,1733
(C22×SD16)⋊19C2 = D4.(C2×D4)φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):19C2128,1741
(C22×SD16)⋊20C2 = (C2×Q8)⋊16D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):20C2128,1742
(C22×SD16)⋊21C2 = C2×D4.2D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):21C2128,1763
(C22×SD16)⋊22C2 = C2×C4⋊SD16φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):22C2128,1764
(C22×SD16)⋊23C2 = C42.15C23φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):23C2128,1774
(C22×SD16)⋊24C2 = C42.16C23φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):24C2128,1775
(C22×SD16)⋊25C2 = C2×C88D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):25C2128,1779
(C22×SD16)⋊26C2 = C2×C85D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):26C2128,1875
(C22×SD16)⋊27C2 = C2×C8.12D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16):27C2128,1878
(C22×SD16)⋊28C2 = D4×SD16φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):28C2128,2013
(C22×SD16)⋊29C2 = SD1610D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16):29C2128,2014
(C22×SD16)⋊30C2 = C22×C4○D8φ: trivial image64(C2^2xSD16):30C2128,2309

Non-split extensions G=N.Q with N=C22×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×SD16).1C2 = C8⋊(C22⋊C4)φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).1C2128,705
(C22×SD16).2C2 = M4(2).31D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16).2C2128,709
(C22×SD16).3C2 = C2×SD16⋊C4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).3C2128,1672
(C22×SD16).4C2 = C42.278C23φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16).4C2128,1681
(C22×SD16).5C2 = C2×C8.2D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).5C2128,1881
(C22×SD16).6C2 = (C2×SD16)⋊14C4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).6C2128,609
(C22×SD16).7C2 = (C2×SD16)⋊15C4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).7C2128,612
(C22×SD16).8C2 = (C2×C4)⋊9SD16φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).8C2128,700
(C22×SD16).9C2 = (C2×C4)⋊3SD16φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).9C2128,745
(C22×SD16).10C2 = (C2×C8).41D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).10C2128,747
(C22×SD16).11C2 = C4⋊C4.97D4φ: C2/C1C2 ⊆ Out C22×SD1632(C2^2xSD16).11C2128,778
(C22×SD16).12C2 = (C2×C4)⋊5SD16φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).12C2128,787
(C22×SD16).13C2 = C2×D4.D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).13C2128,1762
(C22×SD16).14C2 = C2×Q8.D4φ: C2/C1C2 ⊆ Out C22×SD1664(C2^2xSD16).14C2128,1766
(C22×SD16).15C2 = C2×C4×SD16φ: trivial image64(C2^2xSD16).15C2128,1669

׿
×
𝔽